Package: DEHOGT 0.99.0

DEHOGT: Differentially Expressed Heterogeneous Overdispersion Gene Test for Count Data

Implements a generalized linear model approach for detecting differentially expressed genes across treatment groups in count data. The package supports both quasi-Poisson and negative binomial models to handle overdispersion, ensuring robust identification of differential expression. It allows for the inclusion of treatment effects and gene-wise covariates, as well as normalization factors for accurate scaling across samples. Additionally, it incorporates statistical significance testing with options for p-value adjustment and log2 fold range thresholds, making it suitable for RNA-seq analysis.

Authors:Qi Xu [aut], Arlina Shen [cre], Yubai Yuan [ctb], Annie Qu [ctb]

DEHOGT_0.99.0.tar.gz
DEHOGT_0.99.0.zip(r-4.5)DEHOGT_0.99.0.zip(r-4.4)DEHOGT_0.99.0.zip(r-4.3)
DEHOGT_0.99.0.tgz(r-4.4-any)DEHOGT_0.99.0.tgz(r-4.3-any)
DEHOGT_0.99.0.tar.gz(r-4.5-noble)DEHOGT_0.99.0.tar.gz(r-4.4-noble)
DEHOGT_0.99.0.tgz(r-4.4-emscripten)DEHOGT_0.99.0.tgz(r-4.3-emscripten)
DEHOGT.pdf |DEHOGT.html
DEHOGT/json (API)
NEWS

# Install 'DEHOGT' in R:
install.packages('DEHOGT', repos = c('https://ahshen26.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/ahshen26/dehogt/issues

On CRAN:

geneexpressiondifferentialexpressionstatisticalmethodregressionnormalization

3.30 score 2 scripts 172 downloads 1 exports 5 dependencies

Last updated 3 months agofrom:ad614f6a1c. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 13 2024
R-4.5-winNOTENov 13 2024
R-4.5-linuxNOTENov 13 2024
R-4.4-winNOTENov 13 2024
R-4.4-macNOTENov 13 2024
R-4.3-winNOTENov 13 2024
R-4.3-macNOTENov 13 2024

Exports:dehogt_func

Dependencies:codetoolsdoParallelforeachiteratorsMASS

Differentially Expressed Heterogeneous Overdispersion Gene Test for Count Data

Rendered fromDEHOGT.Rmdusingknitr::rmarkdownon Nov 13 2024.

Last update: 2024-09-06
Started: 2024-09-06